A beautiful synthesis of (+)-pseudococaine

You might recall my fascination with cocaine (no, not for that reason), which culminated in a total synthesis of its enantiomer, (+)-cocaine, using our 2-azaallyl anion chemistry (Mans and Pearson, 2004, blog post here).  Davies and co-workers at Oxford have now published a short and elegant synthesis of (+)-pseudococaine, a diastereomer of natural (-)-cocaine.

The key step is a highly diastereoselective transannular iodoamination with concomitant N-debenzylation by iodide ion to produce the tropane skeleton:

It’s worth pointing out that intramolecular iodoamination reactions of simple primary and secondary amines can be problematic due to N-iodoamine formation and subsequent shenanigans, including potential post-cyclization aziridinium ion formation.  Davies’ reaction is well-behaved, since transannular iodoaminations are especially favorable, the amine is tertiary, and the product is not susceptible to aziridinium ion formation.

The cyclization precursor is made by a very nice sequence involving conjugate addition of a chiral lithium amide to an enoate with subsequent in situ trapping of the enolate by a diasteroselective aldol condensation (7% of the other aldol diastereomer is not shown).

Nice work!

Advertisements

Tags: , , , , , , , ,

3 responses to “A beautiful synthesis of (+)-pseudococaine”

  1. milkshake says :

    plus that strategic placement of methoxy group helped too – I that bet a simple benzyl in place of PMP would not have worked for the debenzylative cyclization

  2. lennoxtutoring says :

    One of the most “stimulating” olefin methathesis strategies I’ve seen for a while. 🙂

  3. Anonymous says :

    Not a chemist by any means. Is it possible to turn pseudococaine to cocaine ?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: